Natural Gas

Arup Completes Detailed Engineering Design of Malampaya Depletion Compression Platform

Arup
19/02/2014 18:38
Arup Completes Detailed Engineering Design of Malampaya  Depletion Compression Platform Imagem: Arup Visualizações: 1972 (0) (0) (0) (0)

 

Arup, a multidisciplinary engineering and consulting firm with a reputation for delivering innovative and sustainable designs, announced today that it completed the substructure detailed design of the Malampaya Depletion Compression Platform, a new offshore natural gas platform to be installed in the West Philippine Sea off the coast of Palawan, Philippines. Shell Philippines Exploration B.V. (SPEX), selected Fluor Daniel Pacific, Inc. (Fluor) to design and provide procurement support for the Malampaya Phase 3 Project, which includes the Malampaya Depletion Compression Platform. Fluor appointed Arup as a subcontractor to complete the Substructure Detailed Design and also provide procurement support on substructure related matters.
            
With construction completion scheduled for 2014, this new facility supports extension of the life of the Philippines only indigenous producing natural gas source, which provides 40 to 45 percent of the power generation needs for the island of Luzon (www.malampaya.com). 
 
Arup first became involved in the Malampaya gas field in 1998 when they were commissioned to conduct feasibility studies and Front End Engineering Design (FEED). This led to Engineer Procure and Construction (EPC) phases for the initial development that included the Arup concrete gravity substructure (CGS) solution. In 2010 Arup was engaged by SPEX to develop the second fixed platform substructure. Studies were performed for floating stability, vessel sea-tow response, installation ballasting sequence and post-installation wave and seismic performance. The substructure design proposed by Arup was an adaption of the firm’s award-winning Arup Concept Elevating (ACE) platform. This specific gravity-based solution reduces foundation technical and construction risk for the client.
 
 
 
“Arup’s experience implementing similar self-installing platform designs allowed for the rapid development of an efficient design,” said Martyn Turner, SPEX engineering manager. “The firm’s ability to mobilize an established local engineering team from its Manila office reduced the in-country engineering execution risk and allowed us to come in ahead of schedule and within budget.” 
 
For this extension project, Arup configured the length and width of the platform deck to provide sufficient buoyancy for float-out from the fabricator’s facility and for its tow to the site, and the structural sizing was refined to optimize efficiency and minimize cost. 
 
Located 43 meters deep on a prepared seabed, the platform had to be configured to support 4,900 tonnes of facilities with enough stability to withstand extreme storm conditions and seismic events. Due to high seismic activity in the Philippines, detailed analyses were conducted, including a seismic hazard assessment, site response studies and liquefaction assessments. 
 
In addition to designing the substructure, Arup developed the concept for the 43 meter bridge link connecting the platform to the existing CGS platform Arup delivered in 2000. 

Arup, a multidisciplinary engineering and consulting firm with a reputation for delivering innovative and sustainable designs, announced today that it completed the substructure detailed design of the Malampaya Depletion Compression Platform, a new offshore natural gas platform to be installed in the West Philippine Sea off the coast of Palawan, Philippines. Shell Philippines Exploration B.V. (SPEX), selected Fluor Daniel Pacific, Inc. (Fluor) to design and provide procurement support for the Malampaya Phase 3 Project, which includes the Malampaya Depletion Compression Platform. Fluor appointed Arup as a subcontractor to complete the Substructure Detailed Design and also provide procurement support on substructure related matters.

 

With construction completion scheduled for 2014, this new facility supports extension of the life of the Philippines only indigenous producing natural gas source, which provides 40 to 45 percent of the power generation needs for the island of Luzon (www.malampaya.com).  


Arup first became involved in the Malampaya gas field in 1998 when they were commissioned to conduct feasibility studies and Front End Engineering Design (FEED). This led to Engineer Procure and Construction (EPC) phases for the initial development that included the Arup concrete gravity substructure (CGS) solution. In 2010 Arup was engaged by SPEX to develop the second fixed platform substructure. Studies were performed for floating stability, vessel sea-tow response, installation ballasting sequence and post-installation wave and seismic performance. The substructure design proposed by Arup was an adaption of the firm’s award-winning Arup Concept Elevating (ACE) platform. This specific gravity-based solution reduces foundation technical and construction risk for the client.  

 

 “Arup’s experience implementing similar self-installing platform designs allowed for the rapid development of an efficient design,” said Martyn Turner, SPEX engineering manager. “The firm’s ability to mobilize an established local engineering team from its Manila office reduced the in-country engineering execution risk and allowed us to come in ahead of schedule and within budget.”  


For this extension project, Arup configured the length and width of the platform deck to provide sufficient buoyancy for float-out from the fabricator’s facility and for its tow to the site, and the structural sizing was refined to optimize efficiency and minimize cost. 


Located 43 meters deep on a prepared seabed, the platform had to be configured to support 4,900 tonnes of facilities with enough stability to withstand extreme storm conditions and seismic events. Due to high seismic activity in the Philippines, detailed analyses were conducted, including a seismic hazard assessment, site response studies and liquefaction assessments. In addition to designing the substructure, Arup developed the concept for the 43 meter bridge link connecting the platform to the existing CGS platform Arup delivered in 2000. 

 

Most Read Today
see see
ROG.e
IBP Launches the New ROG.e: The World’s Largest Energy F...
10/10/25
Pre-Salt
CNPE Sets Minimum Value of BRL 10.2 Billion for the Unio...
08/10/25
Natural Gas
Petrobras Carries Out First Natural Gas Import from Arge...
08/10/25
Agreement
Seagems renews Wärtsilä Lifecycle Agreement to support t...
07/10/25
Pre-Salt
Petrobras begins contracting for the construction of FPS...
03/10/25
International Company News
Alkhorayef Petroleum Company acquires GRC Technologies, ...
01/10/25
Pre-Salt
FPSO P-78 arrives at the Búzios Field
01/10/25
RD&I
Brazil Has the Capacity to Develop Its Own Technology fo...
01/10/25
Equatorial Margin
Ibama Approves Pre-Operational Assessment (APO) Conducte...
26/09/25
Sustainable Aviation
Embraer Advances SAF Studies Following Acquisition of Bi...
26/09/25
International Company News
ExxonMobil Guyana Expands Capacity With Seventh Offshore...
24/09/25
International Company News
More LNG for Europe
24/09/25
International Company News
Viking Completes Milestone Delivery to African Energy Pr...
24/09/25
Company News
CHC Helicopter Opens Hangar at Farol de São Tomé Helipor...
22/09/25
International Company News
“Sercel supplies sensors and trucks for major North Afri...
22/09/25
Geological Studies
R&D Clause Enables Project to Strengthen Critical Minera...
15/09/25
Fuels
ANP Approves Pilot Project with New Fuel Inspection Equi...
15/09/25
RD&I
Sensor Developed by Unicamp and UnB Advances in Internat...
15/09/25
Event
ABPIP Hosts SMS Oil & Gas Meeting Focused on Leadership,...
15/09/25
International
Petrobras announces participation in exploratory block i...
15/09/25
REVAP
Revap Maintenance Shutdown Involves R$ 1 Billion Investment
15/09/25
VEJA MAIS
Newsletter TN

Contact us

We use cookies to ensure you have the best experience on our website. If you continue to use this site, we will assume that you agree with our Privacy Policy, terms of use and cookies.